Hierarchical Linear Models II: Special Topics
ICPSR 2011

Instructors

Stephen W. Raudenbush, University of Chicago raudenb@chicago.edu
Aline Sayer, University of Massachusetts Amherst sayer@psych.umass.edu
Guanglei Hong, University of Chicago ghong@chicago.edu

Course Description

This is a second course in hierarchical linear models. Individuals who enroll should have taken the ICPSR course *Hierarchical Linear Models I: Introduction* or its equivalent, and have experience using HLM research techniques. This course will consider causal inference for multilevel and longitudinal analysis; estimating HLM from incomplete data; models for spatially dependent neighborhood effects; generalized hierarchical linear models, including models for binary, count, ordinal, and multinomial outcomes; embedding measurement models in HLM; multivariate models for growth; and models for dyads, with consideration of cross-sectional models for matched pairs and longitudinal models for dyads changing over time.

Required Reading

Sequence of Topics

Tuesday July 5

I. Multivariate linear models for change as hierarchical models

- Disaggregating within-person and between-person effects using a time-varying covariate: Compositional effects model (National Youth Survey data; Transition to Parenthood, KPS, 2008)
- The multivariate approach to modeling longitudinal data: The unrestricted model
- Comparison of models for level-1 residual variance: homogenous, heterogeneous, and a log-linear function of time.
- Compound symmetry and models for autoregressive (AR1) residual variance

 Reading: HLM (2nd edition): Chapter 6
II. Item response models at Level-1: Embedding measurement models in HLM (example from Arnett data; Balaban data)

Reading: HLM (2nd edition): Chapter 11

Doorenbos, Verbitsky, Given & Given (2005)
Raudenbush, Johnson, & Sampson (2003)

III. Extending the multivariate outcomes model to distinguishable dyads

- Cross-sectional models for matched pairs
 - Parallel scales approach (Barnett marital distress data)
 - Known measurement error variance approach (Sanderson relationship data)

- Longitudinal models for dyads changing over time (Powers cortisol data)

Reading: Lyons & Sayer (2005)
Raudenbush, Brennan, & Barnett (1995)
Sayer & Klute (2005)

Wednesday July 6

I. Hierarchical generalized linear models

- Binary outcomes (example from Thailand survey data)
 - A Bernoulli Model
 - A Binomial Model
- Counts (Neighborhood predictors of homicide in Chicago: SRE, 1997)
- Models for ordinal data (Teacher Commitment data; HLM, Chap. 10)
- Models for multinominal data (NELS post-secondary education destinations; HLM, Chap. 10)

Reading: HLM (2nd edition) Chapter 10

Rumberger (1995)
Raudenbush & Sampson (1999a)
Raudenbush, Johnson & Sampson (2003)
II. Models for spatially dependent neighborhood effects

- The spatial distribution of neighborhood collective efficacy
- Association between collective efficacy and homicide rates

Reading: Verbitsky-Savitz & Raudenbush (2009)
Sampson, Raudenbush & Earls (1997)

Thursday July 7

I. Estimating HLM from incomplete data

Reading: Shin and Raudenbush (2007; 2010; 2011)

- a Standard Two-Level HLM
- Contextual Effects Model
- New Directions

II. Three and Four-level Models with nested and cross-classified random effects

- Three-level models (effects of grade retention on child growth, HY, 2007)
- Three-level cross-classified models (neighborhood and school effects on children’s educational attainment; teacher contributions to child growth, HLM, Chapter 12)
- A four-level nested model
- Four-level models with crossing and nesting (Instructional effects on child growth, HR, 2008; neighborhood and school effects on child growth)

Reading: HLM (2nd edition) Chapter 12

Suggested: Hong & Yu (2007)
Hong & Raudenbush (2008)

Friday July 8
Causal Inference for Multilevel Data

I. Multilevel Propensity Score Adjustment

- Introduction and brief overview
- Rubin’s causal model
- Causal effects of educational interventions: An application using grade retention
- Multi-level randomized experiments: Naïve analysis of ECLS-K data
- Selection bias and the propensity score
Logistic regression and hierarchical logistic regression
Propensity score estimation
Propensity stratification, causal analysis with propensity adjustment
Sensitivity analysis
Final remarks

III. Concurrent Treatments: Marginal Mean Weighting with Stratification (MMW-S)
Hong (2010; 2011)

IV. Time-varying treatments
- Inverse probability of treatment weighting (HR, 2008)
- Adaptive centering with random effects (R, 2009)

Reading: Hong & Raudenbush (2005; 2006; 2008)
Raudenbush (2009)

Selected References Organized by Topic

Multivariate Models for Dyads

Models for Causal Inference for Multilevel Data

Models for Incomplete Multilevel Data

Generalized Linear Models with Random Effects

Multivariate Hierarchical Growth Models

Measurement Models

Cross-classified Models

Raudenbush, S.W. (1993). A crossed random effects model for unbalanced data with

Models for Spatially Dependent Neighborhood Effects
