Machine Learning: Uncovering Hidden Structure in Data

ICPSR Summer Program in Quantitative Methods of Social Research
7-11 August, 2017, Berkeley, CA

Instructor:
Christopher Hare
Assistant Professor, Department of Political Science
University of California, Davis
cdhare@ucdavis.edu

Course Description:
The field of machine learning is most commonly associated with "big data": how we can use massive
datasets to make better predictions about things like credit card fraud, Netflix recommendations,
and the like. Though machine learning has been most influential in its commercial and medical
applications, a growing number of social scientists are taking advantage of these methods to: (1)
uncover patterns and structure embedded in data, (2) test and improve model specification and
predictions, and (3) perform data reduction. This course covers the mechanics underlying machine
learning methods and discusses how these techniques can be leveraged by social scientists to gain
new insight from their data. Specifically, the course will cover: decision trees, random forests,
boosting, k-means clustering and nearest neighbors, support vector machines, kernels, neural
networks, and ensemble learning. We will also discuss topics related to best practices, including
error rates, cross-validation, and the use of bootstrapping methods to develop uncertainty estimates.
The course will demonstrate how to estimate these models in both R and Python, as well as methods
for interpreting and presenting model output.

Recommended Texts:
1. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical
 MA: MIT Press.
 New York: Springer.
 Information Processing Systems 27, 2672-2680.
 Adversarial Examples.” In Proceedings of the 2015 International Conference on Learning

11. R

(a) James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning with Applications in R. New York: Springer.

12. Python

Course materials: Course materials (including slides, code, and problem sets) will be available on a private Dropbox folder.

Tentative Schedule:
This schedule is subject to change:

• **Monday, August 7: Machine Learning: Theory and Concepts**
 Computational Learning Theory and the Development of Machine Learning
 The Bias-Variance Tradeoff and Error Rates
 Model Validation and Tuning
 Resampling Techniques
 Predictions and Counterfactuals
 Quick Review of Linear Regression Models
 R and Python
 Computing Performance and Practical Tips

• **Tuesday, August 8: Supervised and Semi-Supervised Learning**
 Generalized Linear Models and Extensions
 Shrinkage/Regularization Methods and the Lasso
 Naïve Bayes
 Neural Networks and the Perceptron
 Support Vector Machines and Relevance Vector Machines
 k-nearest Neighbors

• **Wednesday, August 9: Tree-Based Methods**
 Classification and Regression Trees
 Ensemble Methods: Random Forests and Boosting
 Assessing Variable Importance and Effects
• Thursday, August 10: Unsupervised Learning I
 - \textit{k}-means Clustering
 - PCA and Factor Analysis
 - Manifold Learning and Multidimensional Scaling

• Friday, August 11: Unsupervised Learning II
 - Generative Adversarial Networks
 - Deep Learning
 - Mixture Models and Latent Class Analysis