This course provides an introduction to the theory, methods, and practice of regression analysis. The goals are to provide students with the skills that are necessary to: (1) read, understand, and evaluate the professional literature that uses regression analysis; (2) design and carry out studies that employ regression techniques for testing substantive theories; and (3) prepare to learn about more advanced statistical procedures.

Any course of this type must assume a working knowledge of elementary statistical concepts and techniques. We will conduct a brief review at the beginning of the course, but students must be familiar with such ideas as descriptive statistics, sampling distributions, statistical inference, and hypothesis testing, before moving on to the more complicated matters that will comprise the majority of the course material. The course will not dwell on statistical theory. But, we will focus on the nature of the basic regression model, and the development of the regression estimators. We will see that this model depends very heavily on several assumptions. Therefore, we will examine these assumptions in detail, considering why they are necessary, whether they are valid in practical research situations, and the consequences of violating them in particular applications of the regression techniques. These formal, analytic treatments will be counterbalanced by the use of frequent substantive examples and class exercises. Again, the overall course objective is not to turn you into a statistician-- instead, we are trying to maximize your research skills as a social scientist.

Formal course requirements are as follows: (1) Class attendance and active participation. This is mandatory. Statistical knowledge is cumulative, and gaps in the early material will always have detrimental consequences later on. (2) Completion of class assignments. Most of these are computer exercises, designed to familiarize you with the application of various concepts and techniques introduced in class. Each of these assignments will focus on a specific set of topics. However, the latter assignments are cumulative in the sense that they build upon earlier material in the class.
The following are the recommended texts for the course:

 OR
 OR

The following books are useful reference books:

- Thomas H. Wonnacott and Ronald J. Wonnacott. *Introductory Statistics*.

The following books are supplemental:

- William D. Berry. *Understanding Regression Assumptions*.
- John Fox. *Regression Diagnostics*.

Students should pay special attention to the readings in the recommended texts. This material is critical for the course. It would be wise to read all the material assigned in the recommended texts and to purchase these texts for our own library. Note: You should select either Gujarati/Porter, McClendon, OR Montgomery/Peck/Vining as a recommended text. You should also have access to a basic reference book, such as Bohrnstedt/Knoke/Mee, Hamilton, Weiss, or Wonnacott/Wonnacott. Although these reference books are not required texts, they will prove useful for reviewing basic concepts and introductory material. And they will also provide reasonable alternative discussions of the bivariate and multiple regression models. Most of the supplemental books are either too specialized or advanced to be used as central texts in a course of this type. However, several of them are very good and would be extremely useful books to add to your own library. After you have selected your texts, use the readings listed on the following pages to follow along with the material. You do NOT need to read all of the material in all the texts. But, it is wise to keep up with the readings in one of the recommended texts.
Topics and Reading Assignments

I. Introduction to Regression Analysis

Reading: McClendon, pp. 1-19
 Gujarati and Porter, pp. 15-32
 Montgomery, Peck and Vining, pp. 1-11

II. Preliminary Material and Statistical Review

A. Frequency Distributions, Univariate Summary Statistics, Probability Distributions

Reading: McClendon, pp. 20-25
 Gujarati and Porter, pp. 801-823

 Hamilton, pp. 3-110
 Bohrnstedt, Knoke, and Mee, pp. 27-92, 135-154
 Wonnacott and Wonnacott, pp. 25-60, 109-116, 124-141
 Weiss, pp. 2-231

B. Statistical Inference and the Properties of Statistical Estimators

Reading: Gujarati and Porter, pp. 823-837
 Hamilton, pp. 241-259

1. Confidence Intervals & Hypothesis Tests

Reading: Hamilton, pp. 260-354
 Bohrnstedt, Knoke, and Mee, pp. 154-179
 Wonnacott and Wonnacott, pp. 254-264, 287-297, 300-310, 314-317
 Weiss, pp. 280-485

2. Differences Between Two Means, Two Variances, Etc.

Reading: Hamilton, pp. 397-456
 Bohrnstedt, Knoke, and Mee, pp. 187-212
 Wonnacott and Wonnacott, pp. 265-273
 Weiss, pp. 486-647

C. Linear Combinations

Reading: McClendon, pp. 25-28
 Wooldridge, pp. 707-802
III. The Bivariate Regression Model

A. Introduction: Basic Ideas and Concepts

Reading: Lewis-Beck, pp. 9-26
Schroeder, Sjoquist, and Stephan, pp. 11-23
McClenond, pp. 28-30
Gujarati and Porter, pp. 34-54
Montgomery, Peck, and Vining, p. 12

Hamilton, pp. 457-476
Berry, pp. 1-22
Bohrnstedt, Knoke, and Mee, pp. 253-266
Wonnacott and Wonnacott, pp. 357-370
Weiss, pp. 694-741

B. The Least Squares Criterion and Estimation in the Bivariate Regression Model

Reading: McClenond, pp. 42-49
Gujarati and Porter, pp. 55-61
Montgomery, Peck, and Vining, pp. 13-22

Berry and Feldman, pp. 31-41
Hamilton, pp. 468-477
Bohrnstedt, Knoke, and Mee, pp. 266-274, 284-286
Wonnacott and Wonnacott, pp. 474-496
Kennedy, pp. 11-59
Wooldridge, pp. 50-66, 89-95, 106-109, 123-126, 176-181, 187-190

C. Goodness of fit, the Correlation Coefficient and R^2

Reading: Schroeder, Sjoquist, and Stephan, pp. 23-29
McClenond, pp. 42-49
Gujarati and Porter, pp. 73-94
Montgomery, Peck, and Vining, p. 35

Hamilton, pp. 477-483

D. Assumptions Underlying the Bivariate Linear Regression Model

Reading: McClenond, pp. 133-146
Gujarati and Porter, pp. 61-74; 92 - 97

Berry and Feldman, pp. 9-12
Kennedy, pp. 11-59
E. Statistical Inference, Confidence Intervals, and Hypothesis Tests

Reading:
- Lewis-Beck, pp. 26-47
- Schroeder, Sjoquist, and Stephan, pp. 36-53
- Gujarati and Porter, pp. 107-147
- Montgomery, Peck, and Vining, pp. 22-39

- Hamilton, pp. 503-525
- Bohrnsted, Knoke, and Mee, pp. 277-284
- Wonnacott and Wonnacott, pp. 372-395
- Kennedy, pp. 51-90
- Wooldridge, pp. 126-147
- Weiss, pp. 742-797

F. Summary, Extensions, and a Preliminary Look at Residuals, Outliers, and Influential Cases

Reading:
- McClendon, pp. 49-59
- Gujarati and Porter, pp. 147-188
- Montgomery, Peck, and Vining, pp. 42-58
- Hamilton, pp. 492-495, 535-551
- Berry, pp. 22-88

IV. The Multiple Regression Model

A. Introduction: Notation, Assumptions, and Interpretation

Reading:
- Lewis-Beck, pp. 47-54
- Schroeder, Sjoquist, and Stephan, pp. 29-32
- McClendon, pp. 60-80
- Gujarati and Porter, pp. 188-195
- Montgomery, Peck, and Vining, 67-84

- Hamilton (MDA), pp. 563-566
- Bohrnstedt, Knoke, and Mee, pp. 381-390
- Wonnacott and Wonnacott, pp. 396-406
- Berry and Feldman, pp. 9-18
- Wooldridge, pp. 73-88

B. Measures of Goodness of Fit

Reading:
- Schroeder, Sjoquist, and Stephan, pp. 32-36
- McClendon, pp. 80-83
- Gujarati and Porter, pp. 196-206
- Bohrnstedt, Knoke, and Mee, pp. 392-396
- Wonnacott and Wonnacott, pp. 496-501
C. Statistical Inference and the Role of Hypothesis Testing

Reading: McClendon, pp. 133-174
Gujarati and Porter, pp. 233-243
Montgomery, Peck, and Vining, pp. 84-88

Hamilton, pp. 566-568
Bohrnstedt, Knoke, and Mee, pp. 396-409
Wonnacott and Wonnacott, pp. 406-408
Berry and Feldman, pp. 9-18
Kennedy, pp. 60-80
Wooldridge, pp. 147-167, 214-218

D. Summary and a Brief Look at Extensions

Reading: McClendon, pp. 93-116
Gujarati and Porter, pp. 243-277
Montgomery, Peck, and Vining, pp. 88-111

Hamilton (RWG), pp. 83-101

V. Model Building in Multiple Regression Analysis

A. Models of Substantive Phenomena and the Importance of Model Assumptions

Reading: Lewis-Beck, pp. 63-66
McClendon, pp. 83-93
Montgomery, Peck, and Vining, pp. 111-116

Hamilton, pp. 574-576
Wonnacott and Wonnacott, pp. 410-424
Berry, pp. 1-24

B. Model Specification

Reading: Lewis-Beck, pp. 30-45
Schroeder, Sjoquist, and Stephan, pp. 67-70
McClendon, pp. 288-321
Gujarati and Porter, pp. 467-522
Montgomery, Peck, and Vining, pp. 327-366; pp. 372-386

Berry, pp. 30-45
Berry and Feldman, pp. 18-26
Kennedy, pp. 71-92
C. Nominal Independent Variables

Reading: Schroeder, Sjoquist, and Stephan, pp. 56-58
McClendon, pp. 198-229
Gujarati and Porter, pp. 277-314
Montgomery, Peck, and Vining, pp. 260-280

Hamilton, pp. 576-580
Bohrnstedt, Knoke, and Mee, pp. 409-419
Kennedy, pp. 248-258
Wooldridge, pp. 230-252

D. Functional Forms and Nonlinear Models

Reading: Schroeder, Sjoquist, and Stephan, pp. 58-61
McClendon, pp. 230-287
Gujarati and Porter, pp. 523-540
Montgomery, Peck, and Vining, pp. 171-187

Berry, pp. 60-66
Hamilton, pp. 583-584
Berry and Feldman, pp. 51-72
Kennedy, pp. 93-111
Wooldridge, pp. 304-390

VI. Potential Problems in Multiple Regression Analysis

A. Multicollinearity and Its Effects

Reading: Lewis-Beck, pp. 58-63
Schroeder, Sjoquist, and Stephan, pp. 71-72
Gujarati and Porter, pp. 320-364
McClendon, pp. 161-163
Montgomery, Peck, and Vining, pp. 117-121; pp. 285-323

Wonnacott and Wonnacott, pp. 501-506
Hamilton, pp. 580-581
Berry, pp. 24-27
Berry and Feldman, pp. 37-50
Kennedy, pp. 192-202
Wooldridge, pp. 101-105
B. Nonnormal and Nonconstant (Heteroscedastic) Errors

Reading:
- Schroeder, Sjoquist, and Stephan, pp. 75-77
- McClendon, pp. 174-195
- Gujarati and Porter, pp. 365-411
- Montgomery, Peck, and Vining, pp. 188-194

Berry and Feldman, pp. 73-88
Berry, pp. 67, 72-81
Fox, pp. 40-53
Kennedy, pp. 133-139
Wooldridge, pp. 181-185

C. Measurement Error

Reading:
- Schroeder, Sjoquist, and Stephan, pp. 70-71
- Gujarati and Porter, pp. 524-528

Berry and Feldman, pp. 26-37
Berry, pp. 45-60
Kennedy, pp. 157-163
Wooldridge, pp. 318-325

D. Residual Analysis, Outliers, and Influential Observations

Reading:
- Gujarati and Porter, pp. 496-497
- Montgomery, Peck, and Vining, pp. 129-164; pp. 211-253

Berry, pp. 27-29
Fox, pp. 21-40
Kennedy, pp. 372-388

VII. Additional Topics

A. Dichotomous Dependent Variables

Reading:
- Schroeder, Sjoquist, and Stephan, pp. 79-80
- Gujarati and Porter, pp. 541-591

Wooldridge, pp. 252-258
B. Simultaneous Equation Models

Reading: Schroeder, Sjoquist, and Stephan, pp. 77-79
Gujarati and Porter, pp. 671-688
McClendon, pp. 288-347
Berry, pp. 1-54

C. A Brief Introduction to Panel Data Models, Time Series Models and Other Models of Interest

Reading: Schroeder, Sjoquist, and Stephan, pp. 72-75
Gujarati and Porter, pp. 737-772
Berry, pp. 67-72
Kennedy, pp. 139-156, 163-179