Syllabus:

1. Introduction – missing data pervading social and behavioral research.

2. Topics covered and resources.
 - literature,
 - software.

3. The goals of a missing data analysis.
 - aims of ‘conventional’ analyses,
 - aims of statistical analyses with missing data.

4. The problem and types of missing data.
 - what is relevant to focus on when faced with missing data,
 - pattern and mechanisms of missing data,
 - missing completely at random (MCAR), observed at random (OAR),
 - sufficient and necessary conditions, and what is necessary for MCAR,
 - how to check for OAR,
 - examining MCAR in empirical research; the Benjamini-Hochberg procedure for testing lack of MCAR,
 - missing at random (MAR),
 - ignorable missingness and nonignorable missingness

5. Traditional ways of dealing with missing data.
 - listwise deletion,
 - pairwise deletion,
 - dummy variable adjustment,
 - simple imputation methods (unconditional and conditional fill-in, hot-deck imputation),
 - weighting.

6. Full information maximum likelihood (FIML) in the presence of missing data.
 - why is it meaningful;
 - likelihood function for an incomplete data set;
 - fitting models to data using FIML;
 - examples of FIML applications;
 - fitting the general linear model with missing data,
. a brief introduction to Mplus,
. longitudinal data analysis with incomplete data,
. the intercept and slope (IS) model for longitudinal data,
. individual trajectories of temporal development,
. a simple regression model for change over time,
. centering of time and intercept interpretation,
. an empirical application of the IS model,
. auxiliary variables inclusion - ‘informative’ correlates of missing values; use of informative covariates as predictors,
. robust statistical inferences in the presence of missing data;
- model choice in nationally representative longitudinal research with incomplete data sets (inclusion of design variables and accounting for clustering effects);
- testing group differences in the presence of missing data.

7. Multiple imputation
 - what is multiple imputation (MI), and how does it compare to FIML
 - how does MI work,
 . simple setting,
 . general setting,
 - illustrations of MI
 . analysis of missing data with predictors/covariates measured without error,
 . analysis of missing data using predictors/covariates measured with error,
 - integration of imputation and model fitting in single software (Mplus).

8. Practical aspects of analysis of missing data.
 - dealing with assumption violations and clustering effects,
 - path-analysis with missing data,
 - latent structure examination of a variable set in the presence of missing data,
 - regression models with latent variables, non-normality, clustering effects, and missing data,
 - growth curve analysis.

9. Conclusion and take-home messages of workshop.