Introduction to the R Statistical Computing Environment

The R statistical programming language and computing environment has become the de-facto standard for writing statistical software among statisticians and has made substantial inroads in the social sciences. R is a free, open-source implementation of the S language, and is available for Windows, Mac OS X, and Unix/Linux systems. There is also a commercial implementation of S called S-PLUS, but it has been eclipsed by R.

A statistical package, such as SPSS or SAS, is primarily oriented toward combining instructions with rectangular case-by-variable datasets to produce (often voluminous) printouts. Such packages make routine data analysis relatively easy, but they make it relatively difficult to do things that are innovative or non-standard, or to add to the built-in capabilities of the package. In contrast, a good statistical computing environment also makes routine data analysis easy, but it additionally supports convenient programming; this means that users can extend the already impressive facilities of R. Statisticians and others have taken advantage of the extensibility of R to contribute more than 3000 freely available “packages” of documented R programs and data to CRAN (the Comprehensive R Archive Network) [http://cran.r-project.org/web/packages/index.html] and many others to the Bioconductor package archive [http://www.bioconductor.org/]. As well, R is especially capable in the area of statistical graphics, reflecting the origin of S at Bell Labs, a centre of graphical innovation.

The first two (“lecture”) sessions are meant to provide a basic overview of and introduction to R, including to statistical modeling in R – in effect, using R as a statistical package. The following four to five “workshop” sessions pick up where the basic lectures leave off, and combine lecture material with hands-on experience. The workshop sessions are intended to provide the background required to use R seriously for data analysis and presentation, including an introduction to R programming and to the design of custom statistical graphs, unlocking the power in the R statistical programming environment. The topic for session 8 is flexible, depending upon participants’ interests: the topic given here is a suggestion. If the size of the group is sufficiently small, the workshops may be conducted in a computer lab. Otherwise, participants are encouraged to bring their laptops to the workshop sessions.

An outline of the classes follows (with chapter references to Fox and Weisberg, An R Companion to Applied Regression, Second Edition):

1. Getting started with R (Ch. 1)
2. Statistical models in R (Ch. 4, 5, & appendices)
3. Data in R (Ch. 2)
Course Web Site

Materials for the course will be deposited at
<http://socserv.socsci.mcmaster.ca/jfox/Courses/R/ICPSR-R-course/index.html>,
abbreviation < tinyurl.com/ICPSR-R-course>, which also has active links to many of
the resources described in this syllabus.

Acquiring R

Windows Users

You can download the R Windows installer from CRAN <http://cran.r-project.org/bin/windows/base/>,
or better from a CRAN mirror site near you
<http://cran.r-project.org/mirrors.html>; then double-click on the installer to install R
as you would any Windows software. You can subsequently download and install only
those packages that you want over the Internet from CRAN, via the Packages → Install
packages from CRAN menu in the RGui console.

Mac Users

A universal binary for Mac OS X 10.5 and higher is available from CRAN
<http://cran.r-project.org/bin/macosx/>, or better from a CRAN mirror site near you
<http://cran.r-project.org/mirrors.html>. Double-click on the downloaded file to install
R. You can then download and install packages over the Internet via the Packages &
Data → Packages Installer menu in R.app or R64.app console.

Linux/Unix Users

Precompiled binaries for popular Linux systems are available from CRAN
<http://cran.r-project.org/bin/linux/> (or better from a CRAN mirror site near you
<http://cran.r-project.org/mirrors.html>), or users can compile R from source. See
CRAN for details <http://cran.r-project.org/>.

RStudio

RStudio < http://www.rstudio.org/> is a free, open-source interactive development
environment (IDE) for R that installs easily on Windows, Mac OS X, and Linux systems
and works well “out of the box.” Though still under active development, RStudio in my
opinion provides a better interface to R than the standard Windows and Mac OS X
interfaces.
Installing the car Package

For this course, you'll want to install the car package associated with the R Companion to Applied Regression; use the command

```
install.packages("car")
```

or install via the menus in the Windows or Mac OS X versions of R.

Selected Bibliography

Publishers of statistical texts have recently been producing a steady stream of books on R. Of particular note is Springer's Use R! series of brief paperbacks on various R-related topics <http://www.springer.com/series/6991>, several titles of which I've listed below. Recently, Chapman and Hall, which has published a number of books on R, has also announced The R Series.

Basic Texts

Manuals

R is distributed with a set of manuals, which are also available at the CRAN web site <http://cran.r-project.org/manuals.html>.

A manual for S-PLUS Trellis Graphics (also useful for the lattice package in R) is also available on the web at <http://cm.bell-labs.com/cm/ms/departments/sia/doc/trellis.user.pdf>.

Programming in R

J. M. Chambers, *Software for Data Analysis: Programming with R*. New York: Springer, 2008. Chambers’s newest book ranges quite widely, and emphasizes a deep understanding of the R language, along with object-oriented programming, and links between R and other software. Some topics are unusual, such as processing text data in R.

Statistical Computing in R

The following three books treat traditional topics in statistical computing, such as optimization, simulation, probability calculations, and computational linear algebra, using R (although the coverage of particular topics in the books differs). All offer introductions to R programming. Of these books, Braun and Murdoch is the briefest and most accessible.

Graphics in R

P. Murrell and R. Ihaka, “An approach to providing mathematical annotation in plots.” *Journal of Computational and Graphical Statistics*, 9:582-599, 2000. One of the unusual and very useful features of R graphics is the ability to include mathematical notation. This article explains how.

Data Management

P. Spector, *Data Manipulation with R*. New York: Springer, 2008. Data management is a dry subject, but the ability to carry it out is vital to the effective day-to-day use of R (or of any statistical software). Spector provides a reasonably broad and clear introduction to the subject.

(Highly) Selected Statistical Methods Programmed in R

Also see the package listing on CRAN <http://cran.r-project.org/web/packages/index.html> and the various CRAN “task views” <http://cran.r-project.org/web/views/index.html>.

R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio, *Applied Spatial Data Analysis with R*, New York: Springer, 2008. There is a strong community of researchers in spatial statistics developing R software, much of which is described in this book, including the basic *sp* package, which provides R classes for spatial data.

B. Efron and R. J. Tibshirani, *An Introduction to the Bootstrap*. London: Chapman and Hall, 1993. Another extensive treatment of bootstrapping by its originator (Efron), also accompanied by an R package, **bootstrap** (but somewhat less usable than **boot**).

R. Koenker, *Quantile Regression*. Cambridge: Cambridge University Press, 2005. Describes a variety of methods for quantile regression by the leading figure in the area. The methods are implemented in Koenker's **quantreg** package for R.

C. Loader, *Local Likelihood and Regression*. New York: Springer, 1999. Another text on nonparametric regression and density estimation, using the **locfit** package. Although the text is less readable than Bowman and Azzalini, the **locfit** software in very capable.

W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S, Fourth Edition*. New York: Springer, 2002. An influential and wide-ranging treatment of data analysis using S. Many of the facilities described in the book are programmed in the associated (and indispensable) *MASS*, *nnet*, and *spatial* packages, which are included in the standard R distribution. This text is more advanced and has a broader focus than the *R Companion*.

Other Sources (Some Free)