Overview:
This course introduces students to one of the most important areas of decision theory, the analysis of strategic choice. The fundamental concepts of rational choice will be thoroughly explained and integrated into a broad overview of noncooperative game theory. Specific topics will include static and dynamic games, games with finite and continuous action spaces, repeated games, and Bayesian games. Common solution concepts will be introduced and motivated from first principles. Applications to a variety of substantive fields will be discussed. The prerequisite for the workshop is a semester of college-level calculus or comparable mathematical knowledge.

Texts:
The following texts are the required texts for this class:

You are further encouraged to consult other game theory texts in doing your readings on particular topics specified below. The texts that I particularly recommend are the following:

Assignments:
Students will be assigned regular homeworks that will be due in class the following day. The homeworks will count for 50% of the grade. In addition, there will an in-class final exam, which will count for 50% of the grade as well.
Schedule of topics and readings:

1. Preferences and utility representations

2. Static Games of Complete Information
 Games in Normal Form
 Osborne 2.1-2.5
 Dominance, Weak Dominance, and Rationalizability
 Osborne Ch. 12
 Gibbons 1.1B
 Nash Equilibria in Pure Strategies
 Osborne 2.6-2.10; 3.3
 Gibbons 1.1C
 Mixed Strategy Nash Equilibria
 Osborne Ch. 4
 Gibbons 1.3A
 Equilibrium Existence
 Gibbons 1.3B

3. Dynamic Games of Complete Information
 Games in Extensive Form
 Osborne 5.1-5.3
 Subgame Perfection and Backward Induction
 Osborne 5.4-5.5; 6.1, 6.3; 7.3, 7.4
 Gibbons 2.1A, 2.2A, 2.4A and B
 Application
 Finitely and Infinitely Repeated Games
 Osborne: Ch. 14; 15.1-15.3
 Gibbons 2.3A and B
 Bargaining
 Osborne: 16.1

4. Static Games of Incomplete Information
 Incomplete Information Games as Imperfect Information Games
 Gibbons 3.1B
 Belief Updating
 Bayesian Equilibrium
 Osborne: 9.1-9.3, 9.5
 Gibbons 3.1C
 Harsanyi’s Purification Theorem
 Gibbons 3.2A
Application: Jury Theorems
 Osborne 9.7

5. *Applied Game Theoretic Models: Interpretations*
 Ariel Rubinstein, “Comments on the Interpretation of Game Theory.”