Introduction to the R Statistical Computing Environment

Syllabus - Summer 2010

Instructor: Dave Armstrong
Department of Political Science
University of Wisconsin–Milwaukee
e: armstrod@uwm.edu
Course website: http://www.quantoid.net/ICPSR.php

1 Overview and Course Objectives

This course is designed to get you over the basic hurdles you will face when beginning to learn R. It will cover some of the basic tasks that you face as quantitative researchers and will put you in a position to extend your knowledge of R in whatever direction is required to meet your own needs. There is no assigned reading, but students might find the following books helpful for the purposes listed.

This course is a lecture, meaning there will be no explicit lab component. However, students with laptops are welcomed to bring them to class to follow along with the notes. The materials for the course will be made available as will all of the code to generate all of the results. The instructor will be available outside class to help students with any specific problems.

There is no formal assessment in the course (i.e., assignments), though there will periodically be exercises on which students can work outside of class to develop their knowledge and understanding of R.
Outline

Below is an outline of the five topics that will be covered across the 10-day workshop:

1. Getting to Know **R** and Data Types.
 - Reading in data from other statistical programs
 - Different data types in **R**.
 - Basic data management (recoding, transforming, generating new variables)

2. Basic Statistical Routines
 - Cross-tabs
 - Linear Models
 - Filtering/subsetting with logical expressions
 - Factors and contrasts

3. Intro to Graphics.
 - Overview of different graphics systems
 - Making graphs in the traditional graphics environment.

4. Basic Function Writing
 - Writing basic functions
 - Repeated calculations - loops and apply

5. Lattice Graphs
 - Difference between lattice graphs and traditional graphs
 - Making graphs in the Lattice system.
References

