Maximum Likelihood Estimation I: Generalized Linear Models


  • Dean Lacy, Dartmouth College

This course introduces participants to a number of useful statistical models that move beyond standard linear regression. Among the topics covered are logit and probit models for both binary and ordinal dependent variables, event count models, models for heteroskedastic regressions, and more. Maximum likelihood unifies these models by providing a single, coherent approach to estimation and a way of thinking about how data are generated.

Background: The mathematical background needed for the course is multiple regression using linear algebra. Attendance at the Mathematics for Social Scientists, II lectures should prove useful.

Fees: Consult the fee structure.

Tags: logit, probit, nonlinear

Course Sections

Section 1

Location: ICPSR -- Ann Arbor, MI

Date(s): June 26 - July 21

Time: 9:00 AM - 11:00 AM


  • Dean Lacy, Dartmouth College