HOW TO CHOOSE COURSES IN THE 2017 ICPSR SUMMER PROGRAM
FIRST FOUR-WEEK SESSION

When you enroll in the ICPSR Summer Program, you choose a set of courses that you plan to
attend. These selections should be based upon your own substantive and methodological
interests, your previous course work in mathematics and statistics, your current capabilities,
and your research objectives. Sometimes individuals make their initial course selections based
upon course titles, without fully comprehending the implications of the course contents.
Sometimes course selections are based upon suggestions from a faculty member or fellow
student at your home institution. These advisors and colleagues probably have the best
intentions, but they may be identifying ICPSR courses based upon what they already know,
what they wish you to learn, or what they want you to know when you return home (in order to
help them). As you can imagine, this is not necessarily the course selection strategy that is best
for you!

In this document, you will find an informal course-by-course discussion of what is involved to
ensure the successful completion of any given class. Please take some time to review these
comments. You will have an opportunity to discuss your course selections with a counselor at
the in-person registration/check-in on the first day of the session. Rest assured that we will try
to help you select the set of classes that best meets your personal and professional needs.

Computing

Introduction to Computing is a lecture course that will provide a basic overview of the three
major statistical software packages used most frequently in the social sciences: SPSS, STATA,
and SAS (they will be covered in that order). We recommend that you go to the first
Computing lecture, if at all possible. On that day, the instructor will provide the schedule for
the entire course. He will also cover the basics of the ICPSR Summer Program computing
environment (i.e., useful information for all participants, whether they attend the rest of the
course or not). The instructors in the statistical workshops use different software packages,
depending upon their own needs and interests. So you may only want to attend the
Introduction to Computing sessions that deal with the packages used in your other courses.
On the other hand, you are certainly welcome to attend as many of the computing lectures as
you wish.

Along with the other statistical software packages, we offer a separate lecture course on the
R statistical computing environment. This software is utilized in some of our more advanced
workshops, including Maximum Likelihood Estimation I: Generalized Linear Models, Bayesian
Modeling for the Social Sciences I: Introduction and Application, and Scaling and Dimensional Analysis. These lectures will be offered in the early evening during the first two weeks of the session. The R lectures are intended for those who have had little or no prior experience with this software. But, they do cover enough material to facilitate proficiency in a software system that is often regarded as the “Lingua Franca” of modern statistics.

Mathematics
We recommend that everyone attend a math lecture series. The choice will depend upon your previous math background and the stat courses that you will be attending. Individuals with little or no background in math (at least since your undergraduate days) should elect Mathematics for Social Scientists, I. This is usually the course that complements best the participation in the Introduction to Statistics and/or the Regression I workshops.

Mathematics for Social Scientists, II covers brief overviews of two topics: matrix algebra and calculus. The knowledge of matrix algebra is essential for all of the statistics workshops from Regression II, all the way up through Regression III, MLE, and Bayesian. The calculus is useful—and some would say essential—for the MLE and Bayesian courses.

Mathematics for Social Scientists, III covers probability distributions and calculus (integration). This information is useful (and, again, often considered essential) for any of our more advanced courses, such as MLE, Bayesian, and Advanced Multivariate Methods.

Participants with Little or No Statistics or Math Background
If you have had little or no prior training in, or experience with, statistics then there is only one place to start—at the beginning! Please do not fret about this. It is the one thing we all have in common. We all have to start at the first step, which in our case is Statistics and Data Analysis I: Introduction. If you are staying for the entire eight-week program, then you also should take Statistics and Data Analysis II: Intermediate in the second session. (These two courses comprise an integrated sequence). Along with the introductory statistics workshop you should also attend the Mathematics for Social Scientists, I lectures. Many individuals stumble in their first statistics course because they have been away from mathematics for a long time. So it will actually help your statistics learning to also refresh (or learn anew) the various mathematical skills covered in this class. In addition, you should attend at least the first week or so of the Introduction to Computing lectures to learn the SPSS software, which you will need to know in order to do your homework in the statistics course.

Regression Analysis
There are three Summer Program workshops that cover multiple regression analysis; they are designated I, II, and III. Each has a different intended target audience. Regression Analysis I: Introduction is best suited for those who have had a basic introduction to statistics that covered topics up to the beginning of simple bivariate regression (i.e., the usual coverage of
the first-semester statistics course). The course gives a straightforward presentation of how to use and interpret multiple regression (in scalar notation). It is best suited for those who have not been exposed to the topic before or may have struggled with it in a previous course.

Regression Analysis II: Linear Models is the single most popular course in the ICPSR Summer Program and it is the workshop that is most appropriate for many graduate students. This course provides solid and fairly comprehensive coverage of the general linear model. It presents multiple regression in matrix form and devotes a great deal of attention to strategies for dealing with violations of the basic regression assumptions. The presentations include both the mathematical foundations and substantive applications of multiple regression. Many Summer Program participants have probably taken a similar course at their home institution (often during the first year of graduate school). Even so, a second exposure to the subject matter is often very useful as a review. Almost everyone who takes this workshop finds it to be a wonderful experience, both enlightening and immediately applicable to their own work. This workshop is also a “gateway” course in the sense that the material it covers is prerequisite for most of the more advanced workshops in the Summer Program.

Regression Analysis III: Advanced Methods goes beyond the standard multiple regression courses, into new and modern and alternative forms of analysis using graphical, nonlinear, and nonparametric techniques. This course is intended for more advanced scholars and specialists and does cover some rather esoteric but highly useful perspectives on the general linear model and its extensions.

Beyond Regression: More Advanced Statistical Methods

All of the courses discussed below presuppose a very strong background in multiple regression and a working familiarity with basic matrix notation. This is not merely a recommendation; it should be regarded as a requirement. Those participants without a rigorous background in regression analysis will face a very steep learning curve in any of the more advanced and demanding multivariate courses.

Maximum Likelihood Estimation I: Generalized Linear Models (or MLE) is the most popular advanced course in the Summer Program curriculum. It is considered by many participants (especially those in political science and economics) to be second only to regression in the importance and utility of its subject matter. Major topics covered in this course include logit and probit models, as well as other extensions of the general linear model for categorical, ordered, and limited dependent variables.

Bayesian Modeling for the Social Sciences I: Introduction and Application (or, simply, Bayesian Methods) is a relatively new, powerful, and increasingly popular methodological strategy. It is based upon likelihood methods for inference, but it also brings prior information into the estimation procedures. This workshop assumes a very thorough understanding of multiple
regression, matrix algebra, and the principles of MLE. Some calculus would also be very helpful.

Scaling and Dimensional Analysis covers strategies for creating geometric representations of multivariate data. These methodologies are useful for data reduction, evaluating sources of variability within data, optimizing the measurement properties of a dataset, and producing graphical depictions of data. Techniques covered in this class include summated rating (or “Likert”) scales, unfolding methods, principal components, factor analysis, and multidimensional scaling. Participants taking this course should be familiar with the multiple regression model; knowledge of matrix algebra is very useful, but not absolutely required.

Time Series Analysis I: Introduction covers regression analysis of data that have been collected over time. Because the units of analysis are sequential observations on the same entities, they cannot be regarded as a random sample. This violates some of the fundamental assumptions in regression analysis and therefore requires special methodological techniques. Participants in economics, business administration or public policy often find this an appropriate course selection.

Network Analysis I: Introduction focuses on relationships between social entities. However, the paradigm requires a new and different set of concepts and analytic tools, beyond those provided by standard quantitative statistical methods. The key idea is that the entities under investigation can interact with each other. Network analysis provides tools for representing these interactions in ways that reveal interesting characteristics of the observations.

Multivariate Statistical Methods: Advanced Topics covers statistical techniques for dealing with multiple dependent variables in a single model. Specific techniques covered in this workshop include principal components analysis, factor analysis, canonical correlation, and cluster analysis. Note that the title of this course sometimes can be a bit confusing. Many participants believe they want to learn “multivariate” techniques in order to model the effects of several independent variables on a single dependent variable. That is NOT what this course is about! Again, this workshop covers methods that are used to deal with multiple dependent variables.

Multilevel Models: Introduction and Application covers regression and similar models for data that are clustered within groups (e.g., students within classes, voters in different precincts, survey respondents in different nations, etc.). Such models are known by many synonyms, including hierarchical linear models, general linear mixed models, and clustered data models. The defining feature of these models is their capacity to provide quantification and prediction of random variance due to multiple sampling dimensions (across occasions, persons, or groups, or other clusters or contextual layers such as location).
Mathematical Modeling: Game Theory and Rational Choice
These two courses comprise a mini-curriculum in mathematical modeling so many Summer Program participants elect to take both of them during the same session. *Game Theory I: Introduction* covers the analysis of strategic choice and provides a broad overview of non-cooperative games. The workshop on *Rational Choice Theories of Politics and Society* investigates the ways that actions taken by multiple self-interested actors and decision-makers often lead to stable aggregate outcomes. These two courses assume no prior exposure to the subject matter. But, they do require a reasonable mathematics background and at least one course in basic statistics.

Substantive Course: Race, Ethnicity, and Quantitative Methodology
There is one course that starts from a substantive perspective and focuses on the ways that quantitative reasoning and analysis techniques can provide useful substantive and theoretical insights. That course is *Race, Ethnicity, and Quantitative Methodology*.

The Hubert M. Blalock Lecture Series
The Blalock Lecture series is offered throughout the four-week session. These presentations cover a wide variety of topics in advanced quantitative methods (e.g., Data Mining; Statistical Graphics, and so on), race and ethnicity (e.g., previous presentations have included Latinos and the Changing of America and The Riddle of Black Conservatism), and professional socialization (e.g., Writing Grant Proposals, Academic Publishing in Books and Journals, and Teaching Statistics). The Blalock Series is completely optional. Participants should attend the presentations, as their schedules allow, on the topics they find interesting. Note, however, that the Blalock series strives to include sessions on subjects that are of great interest to the social science research community and the presenters are excellent public speakers. For these reasons, participant reactions to the Blalock Lecture series has always been extremely positive. So, we recommend that you make them part of your own ICPSR Summer Program experience!

How Many Courses Should You Take?
Summer Program participants are often tempted to elect many more courses than they can safely navigate. While this might seem to be an attractive approach, it might not be the most rewarding or useful. It is physically possible to attend Summer Program classes from 9:00 a.m. until 9:00 p.m. every day. But, those who attempt such a schedule usually experience intellectual (and emotional) burn-out. ICPSR Summer Program courses are just too crammed with material, too demanding, and too time-consuming for that strategy to be successful on a regular basis.

The general guideline is that most Summer Program participants take two workshops, along with one or more additional lecture classes. With respect to the lectures, almost everyone takes one of the mathematics courses and attends at least a week or so of the computing
lectures (depending upon the software requirements in their workshops). The choice of workshops, of course, depends upon your own methodological and substantive interests. Some participants take one workshop per four-week session. That is perfectly reasonable, and would comprise what some people would consider a “full course load.”

If you decide to participate in two workshops per session, you may want to designate one as your “primary” course and keep up with all the work (i.e., attend all of the sessions, participate in class, complete homework exercises, etc.) in it throughout the entire session. You could then audit the other, “secondary” course (e.g., attend the classes but not complete some or all of the homework assignments) and still receive good exposure to the material.

A few hardy souls participate in three workshops during a single four-week session. While we understand their motivation, and interpret their plans as a compliment to the quality of Summer Program courses, we still caution you about choosing to follow this route. As stated earlier, three workshops would require an enormous amount of work, even if you only audit two of them. Most participants who try to do this stop attending one or more of the workshops partway through the session. And, we often find that the net results actually are less satisfactory than would have been the case if the participant had elected a smaller number of workshops at the outset.

We want you to select the combination of Summer Program courses that is most relevant and useful for your interests and professional objectives. If you are undecided about exactly which workshops and lectures to take, you will have opportunities to talk with counselors who can advise you about your choices. We also encourage participants to “shop around” during the first day or two of the session; if you really cannot decide between two classes, then attend each one on consecutive days, and use that to guide your choice. Our instructors expect participants to do this, so you won’t offend them! We do recommend that you decide on your course schedule as early as possible—certainly no later than the third day of the session.

We hope that you find these comments useful when you are electing or amending your Summer Program course schedule. Please do not hesitate to ask or consult or email with the staff during this process. We thank you for your participation in the ICPSR Summer Program and sincerely hope that your experience with us will prove to be an experience that is uniquely positive from all perspectives—academic, professional, and social.