CrimeStat® III
VERSION 3.0

A Spatial Statistics Program for the Analysis of Crime Incident Locations

Ned Levine & Associates
Houston, TX

The National Institute of Justice
Washington, DC
November 2004
Table of Contents

Table of Contents i
Acknowledgments vii
License Agreement and Disclaimer x

Part I: Program Overview

Chapter 1: Introduction to CrimeStat 1.1
 Uses of Spatial Statistics in Crime Analysis 1.1
 The CrimeStat III Spatial Statistics Program 1.1
 Program Requirements 1.4
 Installing the Program 1.6
 Step-by-step Instructions 1.9
 Options 1.9
 Short applications 1.9
 On-line Help 1.9
 Chapter 1 Endnotes 1.10

Chapter 2: Quickguide to CrimeStat 2.1
 I. Data Setup 2.2
 Primary File 2.2
 Secondary File 2.4
 Reference File 2.7
 Measurement Parameters 2.9
 II. Spatial Description 2.13
 Spatial Distribution 2.13
 Distance Analysis I 2.19
 Distance Analysis II 2.25
 ‘Hot Spot’ Analysis 2.28
 ‘Hot Spot’ Analysis I 2.28
 ‘Hot Spot’ Analysis II 2.35
 III. Spatial Modeling 2.40
 Interpolation 2.40
 Space-Time Analysis 2.47
 Journey to Crime Analysis 2.53
 IV. Crime Travel Demand 2.59
 Crime Travel Demand Data Preparation 2.60
 Trip Generation 2.61
 Trip Distribution 2.69
 Mode Split 2.88
Table of Contents (continued)

Network Assignment 2.97
File Worksheet 2.103
V. Options 2.106
Dynamic Data Exchange (DDE) Support 2.106

Chapter 3: Entering Data into CrimeStat 3.1
Required Data 3.3
Primary File 3.6
Secondary File 3.15
Reference File 3.17
Measurement Parameters 3.23
Distance Calculations 3.28
Saving Parameters 3.31
Statistical Routines and Outputs 3.32
A Tutorial with the Sample Data Set 3.32
Endnotes for Chapter 3 3.37

Part II: Spatial Description

Chapter 4: Spatial Distribution 4.1
Centrographic Statistics 4.1
Mean Center 4.1
Weighted Mean Center 4.4
Median Center 4.6
Center of Minimum Distance 4.12
Standard Deviation of the X and Y Coordinates 4.12
Standard Distance Deviation 4.15
Standard Deviational Ellipse 4.17
Geometric Mean 4.19
Harmonic Mean 4.22
Average Density 4.24
Output Files 4.24
Statistical Testing 4.25
Directional Mean and Variance 4.36
Convex Hull 4.44
Spatial Autocorrelation 4.47
Moran’s I Statistic 4.48
Geary’s C Statistic 4.56
Moran Correlogram 4.61
Endnotes for Chapter 4 4.67
Table of Contents (continued)

Chapter 5: Distance Analysis I and II 5.1
- Nearest Neighbor Index 5.1
- K-order Nearest Neighbor Index 5.7
- Linear Nearest Neighbor Index 5.12
- K-order Linear Nearest Neighbors 5.18
- Ripley’s K Statistic 5.19
- Assign Primary Points to Secondary Points 5.33
- Distance Matrices 5.36
- Endnotes for Chapter 5 5.40

Chapter 6: ‘Hot Spot’ Analysis I 6.1
- Hot Spots 6.1
- Statistical Approaches to the Measurement of ‘Hot Spots’ 6.1
- Mode 6.8
- Fuzzy mode 6.8
- Nearest Neighbor Hierarchical Clustering 6.14
- Risk-adjusted Nearest Neighbor Hierarchical Clustering 6.36
- Endnotes for Chapter 6 6.53

Chapter 7: ‘Hot Spot’ Analysis II 7.1
- Spatial and Temporal Analysis of Crime (STAC) by Richard Block and Carolyn Rebecca Block 7.1
- K-Means Partitioning Clustering 7.19
- Anselin’s Local Moran Statistics 7.29
- Some Thoughts on the Concept of ‘Hot Spots’ 7.36
- Endnotes for Chapter 7 7.41

Part III: Spatial Modeling

Chapter 8: Kernel Density Interpolation 8.1
- Kernel Density Estimation 8.1
- Single Density Estimates 8.14
- Dual Density Estimates 8.25
- Visually Presenting Kernel Estimates 8.36
- Conclusion 8.36
- Endnotes for Chapter 8 8.40

Chapter 9: Space-Time Analysis 9.1
- Measurement of Time in CrimeStat 9.1
- Space-Time Interaction 9.1
- Knox Index 9.4
- Mantel Index 9.8
- Spatial-temporal Moving Average 9.12
Table of Contents (continued)

Correlated Walk Analysis 9.14
Accuracy of Predictions 9.36
Endnotes for Chapter 9 9.42

Chapter 10: Journey to Crime Estimation 10.1
Location Theory 10.1
Travel Demand Modeling 10.2
Travel Behavior of Criminals 10.7
The CrimeStat Journey to Crime Routine 10.17
Distance Modeling Using Mathematical Functions 10.18
The Journey to Crime Routine Using a Mathematical Formula 10.41
Distance Modeling Using an Empirically Determined Function 10.43
The Journey to Crime Routine Using the Calibrated File 10.61
Draw Crime Trips 10.68
How Accurate are the Methods? 10.68
Cautionary Notes 10.76
Endnotes for Chapter 10 10.79

Part IV: Crime Travel Demand Modeling

Chapter 11: Overview of Crime Travel Demand Modeling 11.1
Travel Demand Forecasting 11.1
Need for More Complex Travel Model of Crime 11.2
Crime Travel Demand Framework 11.3
Crime Travel Definitions 11.7
Crime Travel Demand v. Journey to Crime 11.11
Models v. Description 11.13
Uses of a Crime Travel Demand Model 11.15
References on Travel Demand Modeling 11.18
Endnotes for Chapter 11 11.19

Chapter 12: Data Preparation for Crime Travel Demand Modeling 12.1
Choice of a Zonal System 12.1
Obtaining Crime Data 12.8
Developing a Predictive Model 12.19
Obtaining Land Use Data 12.22
Spatial Location Variables 12.23
Defining Policy or Intervention Variables 12.24
Where to Obtain These Data? 12.25
Creating an Integrated Data Set 12.26
Obtaining Network Data 12.27
Conclusion 12.37
Endnotes for Chapter 12 12.38
Table of Contents (continued)

Chapter 13: Trip Generation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>13.1</td>
</tr>
<tr>
<td>Modeling Trip Generation</td>
<td>13.1</td>
</tr>
<tr>
<td>Approaches Towards Trip Generation Modeling</td>
<td>13.6</td>
</tr>
<tr>
<td>Diagnostics Tests</td>
<td>13.18</td>
</tr>
<tr>
<td>Adding Special Generators</td>
<td>13.25</td>
</tr>
<tr>
<td>Adding External Trips</td>
<td>13.26</td>
</tr>
<tr>
<td>Balancing Predicted Origins and Predicted Destinations</td>
<td>13.27</td>
</tr>
<tr>
<td>Summary of the Trip Generation Model</td>
<td>13.28</td>
</tr>
<tr>
<td>The CrimeStat Trip Generation Model</td>
<td>13.28</td>
</tr>
<tr>
<td>Calibrate Model</td>
<td>13.30</td>
</tr>
<tr>
<td>Make Trip Generation Prediction</td>
<td>13.33</td>
</tr>
<tr>
<td>Balance Predicted Origins & Destinations</td>
<td>13.35</td>
</tr>
<tr>
<td>Example Trip Generation Model</td>
<td>13.36</td>
</tr>
<tr>
<td>Strengths and Weaknesses of Regression Modeling of Trips</td>
<td>13.54</td>
</tr>
<tr>
<td>Summary</td>
<td>13.57</td>
</tr>
<tr>
<td>Endnotes for Chapter 13</td>
<td>13.58</td>
</tr>
</tbody>
</table>

Chapter 14: Trip Distribution

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Background</td>
<td>14.1</td>
</tr>
<tr>
<td>The Gravity Model</td>
<td>14.4</td>
</tr>
<tr>
<td>Travel Impedance</td>
<td>14.7</td>
</tr>
<tr>
<td>Alternative Models: Intervening Opportunities</td>
<td>14.12</td>
</tr>
<tr>
<td>Methods of Estimation</td>
<td>14.13</td>
</tr>
<tr>
<td>CrimeStat Trip Distribution Routines</td>
<td>14.14</td>
</tr>
<tr>
<td>Describe Origin-Destination Trips</td>
<td>14.15</td>
</tr>
<tr>
<td>Calibrate Impedance Function</td>
<td>14.21</td>
</tr>
<tr>
<td>Setup of Origin-Destination Model</td>
<td>14.26</td>
</tr>
<tr>
<td>The Origin-Destination Model</td>
<td>14.37</td>
</tr>
<tr>
<td>Compared Observed & Predicted Trips</td>
<td>14.43</td>
</tr>
<tr>
<td>Uses of Trip Distribution Analysis</td>
<td>14.66</td>
</tr>
<tr>
<td>Endnotes for Chapter 14</td>
<td>14.70</td>
</tr>
</tbody>
</table>

Chapter 15: Mode Split

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Background</td>
<td>15.1</td>
</tr>
<tr>
<td>Utility of Travel and Mode Choice</td>
<td>15.1</td>
</tr>
<tr>
<td>Relative Accessibility</td>
<td>15.9</td>
</tr>
<tr>
<td>CrimeStat Mode Split Tools</td>
<td>15.22</td>
</tr>
<tr>
<td>Applying the Relative Accessibility Function</td>
<td>15.27</td>
</tr>
<tr>
<td>Usefulness of Mode Split Modeling</td>
<td>15.33</td>
</tr>
<tr>
<td>Limitations to the Mode Split Methodology</td>
<td>15.35</td>
</tr>
<tr>
<td>Conclusions</td>
<td>15.36</td>
</tr>
<tr>
<td>Endnotes for Chapter 15</td>
<td>15.37</td>
</tr>
</tbody>
</table>
Table of Contents (continued)

Chapter 16: Network Assignment
 Theoretical Background 16.1
 Networks 16.1
 Shortest Path Algorithms 16.2
 Routing Algorithms 16.9
 The CrimeStat Network Assignment Routine 16.30
 Crime Types 16.46
 Uses of Network Assignment 16.46
 Conclusions 16.48
 Endnotes for Chapter 16 16.49

Chapter 17: Case Studies in Crime Travel Demand Modeling 17.1
 by Richard Block and Dan Helms
 I. Travel Patterns of Chicago Robbery Offenders 17.1
 by Richard Block
 II. Application of Travel Demand Behavior Model on Crime Data from Las Vegas, Nevada 17.25
 by Dan Helms

References R-1
Appendix A: Dynamic Data Exchange Support A-1
Appendix B: Some Notes on the Statistical Comparison of Two Samples B-1
Appendix C: Ordinary Least Squares and Poisson Regression Models C-1
 by Luc Anselin
Acknowledgments

CrimeStat III was developed under the direction of Dr. Ned Levine of Ned Levine & Associates, Houston, TX, from Grant No. 2002-IJ-CX-0007, awarded by the National Institute of Justice (NIJ), Office of Justice Programs, US Department of Justice. The developer would like to thank the many individuals who contributed to this program:

1. Mr. Long Doan of Doan Consulting, Falls Church, VA who was the original programmer for the project. Mr. Doan's brilliance in programming was essential to the development of the initial program. For this version, he had the role of ensuring system integration.

2. Ms. Haiyan Teng of Houston, TX, who was the primary programmer for version 3.0. Her high level of programming competence and mathematical expertise was essential for the successful completion of the crime travel demand routines.

3. Professor Richard Block of Loyola University and Mr. Daniel Helms of the Law Enforcement Corrections and Technology Center at the University of Denver who served as criminal justice advisors to the project. They played critical roles in testing the crime travel demand routines with data from Chicago and Las Vegas. They are co-authors of one chapter.

4. Professor Luc Anselin of the University of Illinois at Urbana-Champaign who provided technical advice and documentation on the regression models used in the crime travel demand model.

5. Professor Peter Stopher of the University of Sidney in Australia who provided technical advice on the crime travel demand model.

6. Mr. Phil Canter of the Baltimore County Police Department, Towson, MD who has been with the project since its inception. For this round, he provided support and data for analysis.

7. Ms. Sandra Wortham of Wortham Design, Wilmington, DE who designed the graphical icons used in the program.

10. Dr. Carolyn Rebecca Block of the Illinois Criminal Justice Information Authority for providing the STAC routine.
11. The dedicated project managers at the Mapping and Analysis for Public Safety Program (MAPS) at NIJ: Ms. Debra Stoe and Mr. Ron Wilson. They both supported the project through this development and provided valuable feedback on the new routines and their utility.

12. All the other individuals from the MAPS unit who have supported the project in earlier stages: for the second version, Ms. Elizabeth Groff of the Institute of Law and Justice, Mr. Eric Jeff eiris of the University of Akron, and Professor Robert Langworthy of the University of Alaska; and, for the first version, Ms. Cindy Mamalian and Dr. Nancy LaVigne of the Urban Institute.

13. To the individuals of the Baltimore Metropolitan Council who provided network and other data on both Baltimore County and the City of Baltimore, in particular Jacqueline Zee, Matt de Rouville, and Gene Bandy. Thanks also to Alan Clark of the Houston-Galveston Area Council for making available data on Houston motor vehicle crashes.

14. To individuals who have provided feedback and information for this and previous versions of CrimeStat: Professor Eric Renshaw of the University of Strathclyde in Glasgow, Mr. John DeVoe of Siebel Systems, Professor Jim LeBeau of Southern Illinois University, Mr. Bryan Hill of the Glendale (Arizona) Police Department, Professor Karl Kim of the University of Hawaii, Mr. Luben Dimov of Louisiana State University, Mr. Weijie Zhou of the Houston-Galveston Area Council, Mr. Keith Alcock of Arizona State University, and Mr. Martin Hittleman of Valley Community College in Los Angeles.

15. To the individuals who provided a examples for the manual: Renato Assunção, Cláudio Beato, Bráulio Silva of the Federal University of Minas Gerais in Belo Horizonte, Brazil; Daniel Bibel of the Massachusetts State Police; Gilberto Câmara, Silvana Amaral, Antônio Miguel V. Monteiro, and José A. Quintanilha of the Instituto Nacional de Pesquisas Espaciais in Brazil; Spencer Chainey of InfoTech Enterprises Europe in London, England; Richard Crepeau of Appalachian State University; Jaishankar Karuppnanan of the University of Madras in Chepauk, India; Yongmei Lu of Southwest Texas State University; David McGrath of the Johnstown Castle Research Centre in Wexford, Ireland; Dietrich Oberwittler and Marc Wiesenmüller of the Max Planck Institute for Foreign and International Criminal Law in Freiburg, Germany; Derek Paulsen of Appalachian State University; Gaston Pezzuchi of the Buenos Aires Province Police Force; Mike Saweda of the University of Ottawa; Takahito Shimada of the National Police Agency in Chiba, Japan; Brent Snook, Paul Taylor & Craig Bennell of the University of Liverpool, England; Matthew Stone of the California Department of Health Services, Chaosheng Zhang of the National University of Ireland in Galway, Ireland; Marta A. Guerra of the Centers for Disease Control and Prevention; Richard Hoskins of the State of Washington Department of Health; Tom
Reynolds of the University of Texas School of Public Health along with Luc Anselin, Richard Block, Carolyn Block, Phil Canter, Long Doan, Daniel Helms, Jim LeBeau, Ron Wilson and Bryan Hill mentioned above.

16. To the dozens of individuals who provided feedback and suggestions for improving the program. They are, unfortunately, too numerous to mention by name.

17. Finally, this program is dedicated to my wife, Dr. C. Elizabeth Castro, for being so patient and supportive throughout this long process. She is the inspiration for this whole effort.
License Agreement and Disclaimer

This project was supported by Grant No. 2002-IJ-CX-0007 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the US Department of Justice.

CrimeStat® is a registered trademark of Ned Levine & Associates. The program is copyrighted by and the property of Ned Levine and Associates and is intended for the use of law enforcement agencies, criminal justice researchers, and educators. It can be distributed freely for educational or research purposes, but cannot be re-sold. It must be cited correctly in any publication or report which uses results from the program. The correct citation is:

The National Institute of Justice, Office of Justice Programs, United States Department of Justice reserves a royalty-free, non-exclusive, and irrevocable license to reproduce, publish, or otherwise use, and authorize others to use this program for Federal government purposes. This program cannot be distributed without the permission of both Ned Levine and Associates and the National Institute of Justice, except as noted above.

With respect to this software and documentation, neither Ned Levine and Associates, the United States Government nor any of their respective employees make any warranty, express or implied, including but not limited to the warranties of merchantability and fitness for a particular purpose. In no event will Ned Levine and Associates, the United States Government or any of their respective employees be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the software or documentation. Neither Ned Levine and Associates, the United States Government nor their respective employees are responsible for any costs including, but not limited to, those incurred as a result of lost profits or revenue, loss of time or use of software, loss of data, the costs of recovering such software or data, the cost of substitute software, or other similar costs. Any actions taken or documents printed as a result of using this software and its accompanying documentation remain the responsibility of the user.

Any questions about the use of this program should be directed to either:

Dr. Ned Levine
Ned Levine & Associates
Houston, TX
ned@nedlevine.com

Mr. Ron Wilson
Mapping and Analysis for Public Safety Program
National Institute of Justice
U. S. Department of Justice
810 7th St, NW
Washington, DC 20531
Ronald.Wilson@usdoj.gov